
www.manaraa.com

An Efficient Test Set Embedding Scheme with Reduced Test-data Storage and
Test Sequence Length Requirements for Scan-based Testing†

D. Kaseridis1, E. Kalligeros1, X. Kavousianos2 and D. Nikolos1

1Computer Engineering & Informatics Dept., University of Patras, 26500, Greece
2Computer Science Dept., University of Ioannina, 45110, Greece

kaserid@ceid.upatras.gr, kalliger@ceid.upatras.gr, kabousia@cs.uoi.gr, nikolosd@cti.gr

Abstract����
In this paper we present an efficient seed-selection algo-

rithm for reducing the test-data storage requirements of
scan-based, test set embedding schemes with reseeding.
Moreover, a technique for reducing the length of the gener-
ated test sequences is introduced. This technique achieves
significant savings with minor overhead (one extra bit per
seed plus a small counter in the scheme’s control logic). Ex-
perimental results demonstrate the advantages of the pro-
posed algorithm and the test sequence reduction technique.

1. Introduction
The ever-increasing size and density of contemporary

Systems-on-a-Chip (SoCs) are placing a severe burden on
the traditional testing approaches based on external Auto-
matic Test Equipment (ATE). The prevalent, core-oriented
design style, although reducing the time-to-market and the
complexity of the designers' task, leads to circuits with re-
duced accessibility and increased test-data storage and test
sequence length requirements. Consequently, the introduc-
tion of new, embedded testing solutions that overcome these
problems is of great importance.

From the perspective of testing, the cores integrated in a
SoC can be classified into two categories: those that are of
known structure and those that are IP-protected and practi-
cally constitute a black box. For the former, fault simulation
and/or test pattern generation can be performed, while the
latter are just accompanied by a pre-computed set T of test
patterns that should be applied to their inputs so as to be
tested. Various, very successful, embedded testing tech-
niques for cores of known structure have been recently pre-
sented in the literature, some of which have been incorpo-
rated in industrial and commercial CAD-tool suites [1], [2].

Three different approaches can be followed in order to re-
produce a test set T that comes with a core of unknown struc-
ture: deterministic test set generation, test-pattern compres-
sion/decompression and test set embedding. In the first ap-
proach, an on-chip ROM or a deterministic Test Pattern
Generator (TPG) [3] is used for precisely reproducing the
test set of the Circuit (or Core) Under Test (CUT). In the
second one, compressed versions of the test patterns of T are
stored in the tester and decompressed on-chip by means of a
built-in circuit [4]-[6]. Contrary to the two aforementioned
approaches, test set embedding [7]-[9] encodes the test pat-
terns of T in a longer TPG sequence, thus allowing the ex-
ploitation of the “test-data volume–test sequence length”
trade-off. Consequently, compared to the other two, the test
set embedding approach can achieve smaller hardware over-

† We thank the European Social Fund (ESF), Operational Program for Edu-
cational and Vocational Training II (EPEAEK II), and particularly the Pro-
gram PYTHAGORAS, for funding the above work.

head and test-data storage results. However, this advantage is
often exchanged with excessively long test sequences. There-
fore, test set embedding techniques that combine both re-
duced hardware and test-data storage requirements with short
test sequences are desirable.

An LFSR-based test set embedding approach with reseed-
ing, featuring the two aforementioned characteristics is pro-
posed in this paper. For minimizing the number of required
seeds, a seed-selection algorithm, which makes use of a heu-
ristic criterion similar to that presented in [10] along with
two new ones, is proposed. The two new criteria significantly
refine the selection process and fairly reduce the selected-
seed volumes. Moreover, a technique for reducing the length
of the generated test sequences is introduced. The proposed
technique partitions the set of vectors generated from each
seed into segments and then reorders the seeds according to
the number of useful segments they include. The test se-
quence length savings it achieves are significant, while the
imposed overhead is confined to one extra bit per stored
LFSR seed plus one very small counter in the scheme's con-
trol logic. We note that the proposed test set embedding ap-
proach can be implemented either as a full BIST solution or
it can be combined with an external tester in a test resource
partitioning scenario.

2. Seed-selection algorithm
For presenting the seed-selection algorithm, we consider

the classical LFSR-based reseeding scheme, consisting basi-
cally of an LFSR, a Bit and a Vector Counter. The LFSR is
loaded with a new seed and is let generate states in order to
produce L test vectors. That is, each seed is expanded to a
window of L vectors, which are serially shifted in the scan
chains (through a phase shifter) and applied to the CUT. The
corresponding responses are captured by the Test Response
Compactor (TRC). The same process is repeated until all the
test cubes accompanying the CUT have been covered.

The proposed seed-selection algorithm receives as inputs
the user-defined parameter L, which represents the size of the
window (number of test vectors) that each seed is expanded
to and a test cube set T. Its goal is to select a number of
LFSR seeds so as each test cube of T to be compatible with
at least one of the vectors generated when the selected seeds
are expanded to the corresponding vector-windows. The set
of chosen seeds should be as small as possible.

The search space of the seed-selection algorithm is (ini-
tially) comprised of L symbolic vectors (sv0, sv1, ..., svL-1).
Symbolic vector svi is the ith vector that would have been
shifted in the scan chains of the CUT, if each bit of the initial
state of the LFSR were equal to a binary variable ai. In other
words, if the maximum scan chain length is equal to n, sym-
bolic vector svi is the union of the sets of linear expressions
of variables ai contained in the scan chains of the CUT after i
n-tuplets of clock cycles from the initialization of the LFSR

147

www.manaraa.com

with a new seed (we do not consider the capture cycle).
For determining a new seed, the seed-selection algorithm

makes use of the well-known concept of solving systems of
linear equations [11]. At first, for each window the seed-
selection algorithm generates the above described search
space by simulating the function of the LFSR and the phase
shifter symbolically. Then, for each test cube t of the set T, it
traverses the search space vector by vector and, by solving
the corresponding linear systems svi=t, tries to verify if a
vector compatible to t can be generated at each position. If
the corresponding system is solvable, then such a vector ex-
ists. In order to be generated, the initial LFSR state should be
updated according to the solution of the system (i.e. assum-
ing Gauss-Jordan elimination, all the variables belonging in
the pivot columns of the system should be replaced by linear
expressions of the free variables). We then say that test cube
t has been covered at the ith window position.

The seed-selection algorithm examines, at each step, all
possible linear systems for all test cubes and chooses one in
order to be solved. After variable replacement, the selected
test vector is removed from T and the search space is regen-
erated using the new initial LFSR state. The above-described
procedure is repeated by selecting a new test cube to be cov-
ered at some window position at each step of the algorithm,
until no system is solvable for any of the remaining test
cubes of T. At this point a new seed has been determined.
The seed-selection algorithm continues to generate seeds this
way until all the test cubes of T have been covered.

Since at each step of the algorithm, linear systems corre-
sponding to more than one test cubes will be solvable at
more than one positions of the examined window, a set of
heuristics should be defined for selecting the system that will
be actually solved. The proposed seed-selection algorithm
utilizes three basic criteria that are presented in Table 1. The
first one is similar to the one proposed in [10] but since this
criterion is not elaborate enough, we refine the selection
process with two additional ones. These two new criteria
significantly improve the encoding ability of the proposed
algorithm and thus lead to better results in terms of the re-
quired seed volumes and the resulting test-sequence lengths.

Table 1. Seed-selection algorithm's criteria
Criterion Description

1st
Select the solvable systems that correspond to the test cubes
containing the maximum number of defined bits

2nd
If there are more than one solvable systems selected be the 1st
criterion, choose the one that its solution leads to the replacement
of the fewest variables �i in the L-vector window

3rd
If there are more than one solvable systems selected be the 2nd
criterion, select the one that is nearest to the first vector of the
window

3. Test-sequence reduction scheme
As it has been explained in the previous section, the seed-

selection algorithm assumes a window of L successive test
vectors for each selected seed. Only some of the vectors of
each window are actually being used for reproducing the test
cubes of set T. One can easily understand that, if the last vec-
tor of a window is not a useful one, i.e. no test cube has been
selected by the algorithm in order to be covered at that posi-
tion, then all vectors from the last useful one to the last win-
dow vector are redundant (Figure 1). On the other hand, the
useless vectors between two successive useful ones are nec-
essary since they connect the two useful vectors in the test

vector sequence. Therefore, they cannot be removed without
reseeding the LFSR. Moreover, as more seeds are selected by
the algorithm, fewer cubes are encoded in new seeds’ win-
dows, leaving more useless states at the end of those win-
dows. Due to the above-mentioned reasons we conclude that
usually there will be a significant number of final-redundant
test vectors in each window.

Figure 1. A window of L states

The most efficient way, in terms of test-sequence length,
for eliminating those redundant final vectors is to stop the
expansion of each vector-window after the clock cycle, in
which the last useful vector is loaded in the scan chains of
the CUT. In that way the number of redundant vectors in
each window will be equal to zero. Assuming that a Vector
Counter is used for controlling the generation of the vectors
of each window, this “maximum reduction” approach re-
quires Vector Counter to be initialized in a different value at
each reseeding and consequently, the initialization values of
the counter should be stored along with the corresponding
seeds. Therefore, excessive test data storage may be required,
especially when a long Vector Counter is needed. In order to
overcome this inefficiency, a different approach has to be
followed.

Such an approach would require a component (e.g. a state
machine), which would be used to generate the required
number of test vectors for every window in the test sequence.
A counter, named Load Counter, could be a simple imple-
mentation of that machine. As far as this counter is con-
cerned, the only information that should be kept in a ROM is
some trigger bits. Since one such bit can be used for trigger-
ing (or not) Load Counter only once, the volume of stored
data is proportional to the accuracy provided by the counter's
values, i.e. how close are these values to the best possible
ones (those of the “maximum reduction” approach). Unfor-
tunately, there will be cases that the volume of data that
should be stored in order to achieve a certain level of accu-
racy, may increase to such an amount that no gain would be
feasible compared to the “maximum reduction” approach.

A solution to this problem would be to assign each value
of Load Counter to a group of test vectors instead of just one.
In order to realize that, we segment each window into a
number of equal-sized groups of test vectors (segments). The
partitioning of a window into segments is shown in Figure 2.
The useful vectors of the window are included in the first k
segments, where the kth segment contains the last useful vec-
tor. k is, most of the times, smaller than m (the total number
of segments a window has been partitioned to) and thus the
last m-k segments (those containing redundant vectors) can
be dropped during test generation. Furthermore, with proper
selection of the segment size (parameter Segment_Size), the
distance between the last useful vector and the end of the last
useful segment can be minimized. Both the above reasons
assure that this segmentation approach eliminates the major-
ity of redundant vectors that a window includes, having as
upper limit of the eliminated redundant vectors the one that
the “maximum reduction” approach drops.

148

www.manaraa.com

Figure 2. The proposed window segmentation technique
After partitioning each seed's window into segments, two

issues remain to be resolved. The first one has to do with the
frequency with which Load Counter will be triggered, or, in
other words, with the number of extra bits that will be stored.
In order to reduce the test-data storage requirements and
achieve at the same time a satisfactory level of accuracy us-
ing a simple implementation, we choose to trigger the
counter only once for each reseeding. Therefore, only one
extra bit is needed to be stored along with every selected
seed.

The second issue concerns the functionality of Load
Counter. If from seed i more useful segments have to be gen-
erated compared to seeds i-1 and i+1, then Load Counter
should first increase (from seed i-1 to seed i) and then de-
crease (from seed i to seed i+1). Seed reordering was chosen
in order to eliminate this problem since seeds are independ-
ent of each other and can be reordered in any suitable way.
Therefore, we rearrange the seeds, in descending order, ac-
cording to the number of useful segments they include.
However, there will be cases for which the difference in the
number of useful segments between two successive (ordered)
seeds will be greater than one. In such cases, some useless
segments should be maintained in the window with the
smaller number of useful segments.

Taking everything into consideration, the steps of the pro-
posed seed-rearrangement procedure are: At first, the seeds
are arranged in descending order according to the number of
useful segments their windows include. After that, if there is
any difference in the number of required segments between
two successive windows, let say Wi and Wi+1, that is larger
than one, then a number of redundant segments should be
allowed in Wi+1, so as this difference to be reduced to one.
Finally the procedure runs over the resulting windows and
calculates the value of the extra bit of each seed (one=next
seed’s window requires one segment less, zero=next seed’s
window requires the same number of segments).

The architecture that handles the operation of the pro-
posed segmentation-rearrangement scheme is shown in Fig-
ure 3. In order to actually control the generation of the test
vectors of a window, three counters are needed: Bit Counter,
Segment Counter and Segment-Vectors Counter. Bit Counter
controls the scan-in operation of each vector's bits in the scan
chains of the CUT. Segment-Vectors Counter controls the
generation of the test vectors of a single segment, while
Segment Counter is responsible for counting the required
number of segments for each window and thus is initialized
for each seed with the value of Load Counter. Segment and
Segment-Vectors Counter constitute a combined counter.
Segment Counter’s value is decreased by one every time
Segment-Vectors Counter signals that Segment_Size patterns
have been applied to the CUT. That is, for every state of

Segment Counter a full count down of Segment-Vectors
Counter is carried out. When Segment Counter becomes
equal to zero, the vectors of the current window have been
generated and the expansion of the current seed stops (Bit
Counter is disabled). In order to generate the next window
the following steps have to be carried out: the next stored
seed is loaded in the LFSR, Segment Counter is loaded with
current Load Counter’s value, Load Counter is triggered (or
not) according to the value of the seed’s extra bit and Bit
Counter is enabled again (due to the initialization of Segment
Counter to a value different from 0). The above-described
process is repeated until all the seeds have been expanded to
their corresponding vector-segments.

�������

���	

���

�
�
�
�
�
�
�

�
�
�
�
��
�

�
�
�
�
�
�
��

�
�

��
��

�
�
�
�
��
�

������

���

�

�

�
�
�
�

�
�
�
�
��
�

�����

�
�������������� �����	�!
"�����

#
�

$ $ $

%
	�

�
�
�
�
��
�

"�����

��
�

��
�

��
�

&'�����'	(���

Figure 3. The proposed test-sequence reduction scheme

4. Evaluation and comparisons
In order to evaluate the effectiveness of the proposed

scheme, we implemented the seed-selection and segmenta-
tion-rearrangement algorithms in C programming language
and we conducted a series of experiments on the larger IS-
CAS’89 benchmark circuits with many hard-to-detect faults,
assuming 32 and 64 scan chains. The required test sets were
obtained by using the Atalanta ATPG tool [12]. The charac-
teristic polynomials of the LFSRs were selected to be primi-
tive and the phase shifter was calculated according to the
work of [13], using 2 XOR gates for every output of it.

In Table 2 we present the results of the proposed tech-
nique for 32 and 64 scan chains. Columns 6 to 8 give the
results after the application of the seed-selection algorithm
with the last one (the column labelled “Test-seq. length (un-
reduced)”) referring to the test-vector sequences for which
full size windows are used for each seed (i.e., before the ap-
plication of the segmentation-rearrangement technique).
Moreover, in columns 9 to 13 we present the results of the
segmentation-rearrangement technique. The final test se-
quence length after the application of the segmentation- rear-
rangement procedure is shown in column 11, while the re-
duction achieved compared to the unreduced test sequences
of column 8 is given in column 12. As can be seen, the gain
is up to 42.9% while the average test-sequence-length reduc-
tion reaches 30.05% and 29.91% for 32 and 64 scan chains,
respectively. Furthermore, for assessing the effectiveness of
the segmentation-rearrangement technique, in the rightmost
column of Table 2 we provide the percentage of the managed
test-sequence-length reductions over those that can be
achieved by the "maximum reduction" approach (Section
3).As can be seen the proposed test-sequence-reduction tech-
nique manages to drop most of the windows' redundant vec-
tors (94.12% and 94.62% on average for 32 and 64 scan
chains respectively).

In Table 3 we compare the proposed technique against the
Reconfigurable Interconnection Network (RIN) approach of
[9], which has been shown to be the most successful test set

149

www.manaraa.com

Table 2. The results of the proposed technique

embedding technique in the literature, in terms of the re-
quired test-data storage. Since, according to this approach no
reseedings are performed, two strategies are proposed for
declustering the care bits of the test cubes: scan cell reor-
ganization and the insertion of an extra level of multiplexers
between the outputs of RIN and the inputs of scan chains of
the CUT (Interleaving Multiplexers). Due to the fact that
scan cell reorganization is not a preferable approach, in the
comparisons we considered only the strategy of the extra
interleaving level.

Two kinds of comparison are presented in Table 3. In col-
umns 3 to 5 we compare the two techniques with respect to
the length of the resulting test sequences, while in the next 3
columns we compare them as far as the imposed hardware
overhead is concerned. The hardware overhead was calcu-
lated according to the number of transistors that each ap-
proach requires in order to implement the control logic and
to store the required test-data. Therefore, for the case of [9]
the hardware overhead is equal to the sum of the transistors
required for the implementation of the tristate-buffer-based
MUXes of the RIN and the interleaving level, as well as the
required ROM for storing its necessary control bits. On the
other hand, the hardware overhead of our proposed approach
was calculated as the sum of the transistors required for the
implementation of the phase shifter plus the transistors that
correspond to the ROM-bits that should be stored.
Table 3. Test-sequence length and hardware overhead comparisons

 Test sequence length Hardware overhead
Scan

Chains Circuit [9]
(#vec.)

Proposed
(#vec.)

Reduct.
(%)

[9]
(#trans.)

Proposed
(#trans.)

Reduct.
(%)

s9234 135765 46312 65.89 9424 7082 24.85
s13207 152596 34040 77.69 5428 3737 31.15
s15850 222336 30095 86.46 7352 6792 7.62
s38417 625273 97736 84.37 44896 47640 -6.11

32 scan
chains

s38584 383009 36775 90.40 5884 5300 9.93
s13207 75047 34573 53.93 19409 4174 78.49
s15850 179580 20004 88.86 19420 7504 61.36
s38417 616835 95078 84.59 52524 48754 7.18

64 scan
chains

s38584 291425 37566 87.11 18323 5926 67.66

As can be seen from this table, the proposed approach re-
quires substantially smaller test sequences than those of [9].
Specifically, our technique is better in terms of test-sequence
length in all cases, requiring on average 80.96% and 78.62%
fewer test vectors, for the 32 and 64 scan chains respectively.
As for the hardware overhead comparisons, the RIN ap-
proach requires significantly fewer ROM bits but this is done
at the expense of the insertion of two levels of MUXes be-
tween the LFSR and the scan chains of the CUT. Conse-
quently, these MUXes, the size of which is proportional to

the number of the scan chains, require for their implementa-
tion significantly more transistors compared to those needed
by both the phase shifter and the stored data bits of our ap-
proach. On average, compared to the technique of [9], the
proposed one requires 13.49% and 53.67% less hardware
overhead for 32 and 64 scan chains respectively.

5. Conclusion
An efficient LFSR-based test set embedding approach

with reseeding has been proposed in this paper. It features an
effective seed-selection algorithm that minimizes the test-
data storage requirements, as well as a technique for reduc-
ing the resulting test sequences. The latter achieves signifi-
cant test sequence length savings (30% on average), while
the overhead imposed is confined to one extra bit per stored
LFSR seed plus one very small counter in the scheme's con-
trol logic. The proposed approach compares favorably
against the most recent and efficient test set embedding tech-
nique in the literature.

References
[1] B. Koenemann et al., "A SmartBIST variant with guaranteed encod-
ing", Proc. of ATS, 2001, pp. 325-330.
[2] J. Rajski et al., “Embedded deterministic test”, IEEE TCAD, vol. 23,
May 2004, pp. 776-792.
[3] C. Dufaza et al., "LFSROM: A hardware test pattern generator for
deterministic ISCAS85 test sets", Proc. of ATS, 1993, pp. 160-165.
[4] A. Jas et al., "Scan Vector Compression/Decompression Using Sta-
tistical Coding", Proc. of VTS, 1999, pp. 114-120.
[5] K. Chakrabarty, V. Iyengar, A. Chandra, Test resource partitioning
for System-on-a-Chip, Kluwer, 2002.
[6] I. Bayraktaroglu and A. Orailoglu, “Concurrent application of com-
paction and compression for test time and data volume reduction in scan
designs”, IEEE TC, vol. 52, Nov. 2003, pp.1480-1489.
[7] D. Kagaris & S. Tragoudas, "On the design of optimal counter-
based schemes for test set embedding", IEEE TCAD, Feb. 1999, pp.
219-230.
[8] S. Swaminathan & K. Chakrabarty, "On using twisted-ring counters
for test set embedding in BIST", JETTA, vol. 17, no. 6, Dec. 2001, pp.
529-542.
[9] L. Li & K. Chakrabarty, "Test set embedding for deterministic BIST
using a reconfigurable interconnection network", IEEE TCAD, Sept.
2004, pp. 1289-1305.
[10] E. Kalligeros et al. , "Multiphase BIST: A new reseeding technique
for high test-data compression", IEEE TCAD, Oct. 2004, pp. 1429-
1446.
[11] B. Koenemann, "LFSR-coded test patterns for scan design", Proc.
of ETC, 1991, pp. 237-242.
[12] H. K. Lee and D. S. Ha, “Atalanta: an Efficient ATPG for Combi-
national Circuits,” TR, 93-12, Dep't of Electrical Eng., Virginia Poly-
technic Institute and State University, 1993.
[13] J. Rajski et al., “Automated synthesis of phase shifters for Built-In
Self-Test applications”, IEEE TCAD, vol. 19, Oct. 2000, pp. 1175-1188.

 Seed-selection algorithm Segmentation-rearrangement technique

Scan
Chains Circuit Scan

elements
LFSR
length

Test set
(T) size

(#vectors)

Window
size (L)

Number
of seeds

Test-seq.
length

(unreduced)

Segment
_Size

Segment
Counter
length

Test-seq.
length

(reduced)

Test-seq.
length

gain (%)

% of "Max.
reduction"

gain
s9234 247 44 1190 500 146 73000 8 6 46312 36.56 97.55

s13207 700 24 2217 350 129 45150 5 7 34040 24.61 92.55
s15850 611 39 2391 300 157 47100 5 6 30095 36.10 97.79
s38417 1664 85 6322 300 548 164400 2 8 97736 40.55 99.56

32 scan
chains

s38584 1464 56 8317 500 84 36775 25 5 36775 12.44 83.14
s13207 700 24 2217 370 126 46620 11 6 34573 25.84 94.33
s15850 611 39 2391 200 162 32400 3 7 20004 38.26 98.55
s38417 1664 85 6322 300 555 166500 1 9 95078 42.90 99.80

64 scan
chains

s38584 1464 56 8317 500 86 43000 18 5 37566 12.64 85.79

150

